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Abstract
An analytic approach to the strongly coupled T ⊗ t problem is described,
which allows a systematic expansion of the Hamiltonian in inverse powers of
the coupling parameter K . The approach rests on the construction of a novel
vibronic basis causing the Hilbert space to decay into two orthogonal subspaces
L1 andL2 such that, for strong coupling, the low-lying states in L1 are separated
from all states in L2 by a large energy gap. This constitutes the basis for the
construction of an effective Hamiltonian H1 defined on L1 and generated by
means of projection operators. The form of H1 is that of an infinite series
in increasing powers of K −1, which is terminated after the terms of O(K −2).
The eigenvalues of H1 incorporate those already found by Moffitt and Thorson,
including the correct splitting of the t2g vibrations.

1. Introduction

Transition-metal (TM) oxides are notoriously difficult to describe because of a rather close
interplay between the spin, orbital, and lattice degrees of freedom (Imada et al 1998). This
applies, in particular, to the recently investigated titanates RTiO3, where R denotes a rare-
earth ion. These compounds possess one t2g electron per site, and their crystal structure is a
pseudocubic perovskite with an orthorhombic GdFeO3-type distortion giving rise to a crystal
field of nearly trigonal D3d symmetry (Mochizuki and Imada 2003, Cwik et al 2003, Pavarini
et al 2004). The trigonal field, whose strength depends on the degree of distortion, competes
with the cubic field (symmetry Oh) resulting from the oxygen ligands surrounding the Ti3+

ion, and this competition has been proposed by Mochizuki and Imada (2003, 2004) to be the
source of the unusual magnetic and vibronic properties of the titanates. Thus, for example, the
strongly distorted YTiO3 shows a ferromagnetic ground state accompanied by a sizeable Jahn–
Teller (JT) effect, whereas the less distorted LaTiO3 is antiferromagnetic with no detectable JT
coupling. The main effect of the trigonal field is that it causes the TiO6 octahedra to contract
along one of the four threefold axes, which leads to a splitting of the t2g state into a low-lying
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a1g and a higher-lying eg level. Mochizuki and Imada (2004) showed that the occupation
of the a1g orbitals well explains the antiferromagnetism in LaTiO3 as well as the isotropic
spin-wave spectrum measured by Keimer et al (2000). From these results one may conclude
that spin–orbit coupling is probably very weak in the whole titanate series; in YTiO3 it is
suppressed by the strong JT effect, in LaTiO3 it is also absent because the isotropic spin-wave
spectrum indicates that the orbital moment is quenched. At the same time the trigonal field
also affects the JT interaction. In the absence of the field the JT coupling would be expected
to be of the general type T ⊗ (e + t), indicating that the t2g electron couples to both eg and t2g

vibrations. The presence of the field and the concomitant splitting of the t2g level, however,
turn the T ⊗ (e + t) system into a pseudo-JT effect and eventually render it undetectably small
as in LaTiO3. In this paper we concentrate solely on the JT effect in the titanates.

At present, an adequate treatment of the pseudo-JT problem in the titanates is out of reach,
and even the pure T ⊗ (e + t) system is very difficult. Therefore, as the first step, we further
simplify the problem by omitting the coupling to the eg vibrations leaving the full problem
to future study. Thus, the model to be considered here is the T ⊗ t JT system describing
the vibronic coupling of the electronic t2g triplet to triply degenerate vibrations of the same
symmetry. In the basis of the t2g orbitals ψα(r) (α = x, y, z), the Hamiltonian of the T ⊗ t
system may be written as (Moffitt and Thorson 1957, Ham 1965, Judd 1974)

H = 1
2

3∑

l=1

(P2
l + ω2 Q2

l )τ0 + K
3∑

l=1

Qlτl . (1)

Here the first part describes the t2g normal vibrations of frequency ω and the second part
represents the linear JT coupling, where K denotes the coupling parameter, τ0 is the 3×3 unit
matrix, and

τ1 =
( 0 0 0

0 0 1
0 1 0

)
, τ2 =

( 0 0 1
0 0 0
1 0 0

)
, τ3 =

( 0 1 0
1 0 0
0 0 0

)
. (2)

The weak-coupling Hamiltonian has been diagonalized by Moffitt and Thorson (1957)
by means of a unitary transformation (see also Bersuker and Polinger 1989). The lowest state
is found to be a triplet, and this applies to all finite values of K because of the octahedral
symmetry of the Hamiltonian. In the limit of infinite coupling, however, the symmetry of the
Hamiltonian changes and the ground state is a quartet. This result follows from the topology
of the potential-energy surface and has already been obtained by Van Vleck (1939) and Öpik
and Pryce (1957). By using classical arguments the latter authors also found that, apart from
the lowering of the energy by an amount proportional to K 2, the degenerate t2g vibrations split
into a mode of frequency ω and two degenerate modes of frequency

√
2/3ω. The first steps

towards a unified quantum treatment of the mode-splitting problem have been taken by Shultz
and Silbey (1976). In a more recent approach, Liu et al (1996) tackled the problem by means
of a special unitary transformation (scale transformation) and a combination of perturbational
and variational techniques.

In this paper we intend to put forward a novel analytic treatment of the T ⊗ t problem,
which is nonperturbative and leads to a systematic expansion in powers of K −1 about the
strong-coupling limit. Such expansions about the limits of weak and strong coupling might
provide an adequate quantitative basis for a proper assessment of the role of the JT effect in the
titanates. Our approach rests on a suitably chosen basis of the Hilbert space, i.e., vibronic states
constructed with the help of new electronic and vibrational operators. In this basis the Hilbert
space decays into two orthogonal subspaces L1 and L2 such that, for strong coupling, the low-
lying states in L1 are separated from all states in L2 by a large energy gap. This constitutes the
basis for the construction of an effective Hamiltonian defined on L1 and generated by means
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of projection operators. The eigenvalues of the lowest-order effective Hamiltonian are exactly
those given by Moffitt and Thorson (1957), including the correct splitting of the t2g vibrational
modes.

In section 2 we prove that the Hamiltonian commutes with a rotation R of the coordinate
system through the angle θ = 2π/3 about a threefold axis. The existence of this constant
of the motion gives rise to new electronic creation and annihilation operators causing the
Hamiltonian to take diagonal form with respect to these operators. The decay of the Hilbert
space into the subspaces L1 and L2 are the main topic of section 3. To generate the subspaces,
we construct projection operators and subsequently use them to decompose the Hamiltonian
with respect to L1 and L2. The decomposed form of the Hamiltonian constitutes the basis
for the strong-coupling expansion in section 4. This is achieved by means of a sequence of
unitary transformations, whose effect is to remove those terms from the Hamiltonian giving
rise to a coupling of the subspaces. The transformations result in two effective Hamiltonians,
H1 defined on L1 and H2 defined on L2, each having the form of an infinite series in increasing
powers of K −1, which we terminate after the terms of O(K −2). Subsequently we ignore H2,
since we are only interested in the low-energy part of the spectrum, and solely concentrate on
H1 to obtain its eigenvalues and eigenstates. Finally, our main findings and possible extensions
of our treatment are discussed in section 5.

2. The new vibronic basis

Subsequently it proves most convenient to describe the vibrational and orbital degrees of
freedom in terms of creation and annihilation operators. The normal vibration l (l = 1, 2, 3)
is created (annihilated) by the operator a†

l (al), while c†
α (cα) creates (annihilates) a spinless

electron in the t2g orbital ψα(r) (α = x, y, z). Hamiltonian (1) may then be written as

Ĥ ≡ H/(h̄ω) = a† · a + 3/2 + k
3∑

l=1

(a†
l + al)c† · τl · c, (3)

where the coupling strength is now expressed by the dimensionless parameter k, while the row
vectors a† = (a†

1a†
2a†

3) and c† = (c†
x c†

yc†
z ), as well as their associated column vectors a and c,

have been introduced for convenience.
To simplify the solution of the eigenvalue problem we recall that the invariance of the

Hamiltonian with respect to a given group implies that all operations of the group are conserved
quantities. A set of such quantities, particularly well suited to our purposes, is provided by
the threefold rotations Ra (a = 1, . . . , 4) of Oh describing rotations of the coordinate system
through the angle θ = 2π/3 about the four threefold axes, whose directions are specified by
the nonorthogonal unit vectors (see figure 1)

e1 = 1√
3
(111), e2 = 1√

3
(1̄1̄1),

e3 = 1√
3
(1̄11̄), e4 = 1√

3
(11̄1̄).

(4)

Denoting by e = (exeyez) any of these vectors, we see that the components eα have the property
|eα| = 1/

√
3 (α = x, y, z) and satisfy the relations

ex = √
3eyez, ey = √

3exez, ez = √
3exey . (5)

Since all Ra commute with the Hamiltonian Ĥ , but not among themselves, we select a single
rotation R such that Ĥ and R form a complete set of commuting operators. Thus, rather
than working with the full group Oh, we prefer to select the cyclic (Abelian) subgroup C3
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Figure 1. Threefold rotation axis C3 along the direction e1.

of threefold rotations generated by R. Below we shall demonstrate that this subgroup alone
enables us to achieve a partial diagonalization of the Hamiltonian in the electronic subspace.

First of all, however, we shall prove that R is indeed a conserved quantity. To this end we
recall that in Hilbert space a rotation through θ = 2π/3 about an axis along the direction e is
described by the rotation operator

R = exp(iθe · J), (6)

where J = M + L is the total angular momentum. The vibrational and electronic angular
momenta M and L, respectively, are defined by the equations (Moffitt and Thorson 1957)

M = a† · σ · a, L = c† · σ · c, (7)

where σ = (σx σy σz) denotes a vector, whose components are the matrices

σx =
( 0 0 0

0 0 −i
0 i 0

)
, σy =

( 0 0 i
0 0 0
−i 0 0

)
, σz =

( 0 −i 0
i 0 0
0 0 0

)
. (8)

With the help of (7) and (8) the components of L are readily evaluated and read

Lx = c† · σx · c = −i(c†
ycz − c†

z cy),

L y = c† · σy · c = −i(c†
z cx − c†

xcz),

Lz = c† · σz · c = −i(c†
x cy − c†

ycx),

(9)

and quite similar expressions are found for Mx ,My,Mz . From (9) it follows that L2 = 2
on the underlying single-electron Hilbert space, implying that L has the eigenvalue l = 1, as
is expected for the p-like t2g state. The eigenvalues m(m + 1) of M2 and j ( j + 1) of J2 are
also known (Moffitt and Thorson 1957, Messiah 1964, Marshalek 1992). Let the eigenvalue
n = n1 + n2 + n3 of a† · a be given; then m may take the values n, n − 2, . . . , 0 or 1, depending
on whether n is even or odd, while j follows from the vector model of angular-momentum
addition, i.e., m + l � j � |m − l|. The components (9) satisfy the commutation relations

[Lα, cβ] = iεαβγ cγ , (10)

where εαβγ is the Levi-Civita symbol.
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As the first step of our proof we need to know how the components of c and a transform
under the action of R. To obtain R†cxR, for example, we employ the commutator expansion

eZ Ae−Z = A + [Z , A] + (1/2!)[Z , [Z , A]] + · · · (11)

and make use of (10). A straightforward calculation then yields the expression

R†cxR = (
√

3/2)[(
√

3ex ey + ez)cy + (
√

3ex ez − ey)cz],

which reduces to R†cxR = √
3ezcy by virtue of relations (5). By the same arguments we find

that R†cyR = √
3excz and R†czR = √

3eycx . The transformation behaviour of the boson
operators al is very similar to that of the fermion operators cα , both cases differing merely in
notation. The results may be written in the compact form

R†cR = � · c, (12a)

R†aR = � · a, (12b)

where the unitary matrix

� = √
3

( 0 ez 0
0 0 ex

ey 0 0

)
. (13)

To prove that R is a conserved quantity, we only show that it leaves the JT coupling

HJT = k(a† · t + t† · a)

invariant, where we have defined the column vector t and the corresponding row vector t†,
whose components are the Hermitian operators tl = c† · τl · c (l = 1, 2, 3). From (12a) it
then follows that R†tlR = c† · �†τl� · c, and since the matrices τl transform in the same
manner as the al in (12b) (i.e., �†τ1� = √

3ezτ2, etc), one readily infers that R†tR = � · t,
R†t†R = t† ·�†. These relations, together with (12b) and the unitary property of �, prove
that R† HJTR = HJT. We thus conclude that R† ĤR = Ĥ , whence it follows that R is a
conserved quantity.

We shall now exploit the Abelian property of the subgroup C3 to generate new electronic
operators such that the Hamiltonian takes diagonal form with respect to these operators. From
equations (12) and the relation �3 = τ0 it follows that R3 = 1; hence, R possesses the three
complex eigenvalues

rκ = exp(iκθ), (14)

where κ = 0,±1 labels the (one-dimensional) irreducible representations of C3. Since R
is also unitary, our subgroup consists of the elements {R,R2 = R−1 = R†,R3 = 1}, as
expected. As the first step we set up the projection operators Pκ for selecting the subspace
belonging to the eigenvalue (representation) rκ of R. According to Löwdin (1962),

Pκ = 1
3 (1 + r∗

κR + rκR†), (15a)

where rκ is defined by (14). Apart from being Hermitian, Pκ has the properties∑

κ

Pκ = 1, Pκ Pκ ′ = δκκ ′Pκ . (15b)

We now use relations (15b) and the fact that all parts of (3) commute with Pκ to decompose
the Hamiltonian into components acting on the eigenspaces of R as follows:

H = a† · a + 3/2 +
∑

κ

PκHJTPκ . (16)

This form already demonstrates that the Hamiltonian will take diagonal form with respect to
the quantum number κ , and the argument applies equally well to other vibronic operators,
provided they commute with R.
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To obtain (16) in explicit form,we need to calculate the vectors cPκ. Using (12a) and (15a)
we find that

cPκ = 1
3 (τ0 + r∗

κ�R + rκ�
†R†) · c

= 1√
3




cx/

√
3 + ezr∗

κRcy + eyrκR†cz

ezrκR†cx + cy/
√

3 + exr∗
κRcz

eyr∗
κRcx + exrκR†cy + cz/

√
3



 , (17)

and we shall now prove that the operators Rcα and R†cα on the right-hand side of (17) may
be replaced by Rcα and R†cα , respectively, where

R = exp(iθe · M) (18)

acts in the vibrational subspace, since only the vibrational angular momentum M is involved.
To show this, we first observe that the rotation operator (6) factorizes and can be written as
R = RR̃, where R is given by (18) and R̃ = exp(iθe ·L) is a rotation operator in the electronic
subspace. Let |�〉 be an arbitrary vector of the single-electron Hilbert space,

|�〉 =
∑

α

�αc†
α|0〉,

where �α (α = x, y, z) are pure functions of the operators al, a†
l (l = 1, 2, 3) and |0〉 denotes

the common vacuum of all particles. If Rcα is applied to |�〉 and use is made of the fact that
R̃ commutes with �α, the result is

Rcα|�〉 = R�α|0〉 = R�α|0〉 = Rcα|�〉.
Hence, Rcα = Rcα on the entire Hilbert space, which proves our claim. The vector (17) may
then be written as

cPκ =
( ex

eyrκ R†

ezr∗
κ R

)
fκ ≡ uκ fκ , (19)

where uκ is a unit vector (u†
κ · uκ = 1), while the quantities

fκ = ex cx + eyr∗
κ Rcy + ezrκ R†cz (20a)

behave like ordinary fermion operators:

{ fκ , f †
κ ′ } = δκ,κ ′, { fκ, fκ ′ } = 0. (20b)

However, due to the presence of the operator R in (20a), the fκ , f †
κ cease to commute with the

vibrational operators al, a†
l . This will not entail any problems, provided care is taken of the

order of the operators.
To achieve the most convenient form of the Hamiltonian we also introduce, in addition to

the new fermion basis, new vibrational modes having the property to bring the rotation operator
R to diagonal form. To obtain these, one notices that the exponent in (18) may be written as∑
α eαMα = a† · s · a, where the Hermitian matrix s = ∑

α eασα has the eigenvalues 0,±1
and may be brought to diagonal form by means of the unitary matrix

T =
( ex ex ex

eyeiθ ey eye−iθ

eze−iθ ez ezeiθ

)
.

The eigenvalue equation T†sT = Λ, where Λ denotes the diagonal matrix of the eigenvalues
of s, then requires that the new operators bµ (µ = 1, 0,−1) are related to the al (l = 1, 2, 3)
by means of the equation a = T · b, whose explicit form reads

a1 = ex(b+ + b0 + b−),
a2 = ey(eiθb+ + b0 + e−iθb−),
a3 = ez(e−iθb+ + b0 + eiθb−).

(21)
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Expressed in terms of the bµ the exponent in (18) becomes
∑

α eαMα = b† ·Λ · b, whereupon
the rotation operator R takes the diagonal form

R = exp[iθ(N+ − N−)], (22)

where Nµ = b†
µbµ. The new operators satisfy the usual commutation relations for bosons (i.e.,

[bµ, b†
ν] = δµν etc) and transform according to the simple formula

R†bµR = eiµθbµ, (23)

where µ = 0,±1 and θ = 2π/3. This relation lends itself to a geometrical interpretation
of the new vibrational modes. Since b0 commutes with R, it must describe a vibration along
the direction e of the threefold rotation axis and will, therefore, be referred to as longitudinal
mode. The operators b+ and b−, on the other hand, describe vibrations orthogonal to e and
will be denoted as perpendicular modes.

Finally we show that the Hamiltonian assumes diagonal form with respect to the new
fermion basis. This is already implied by the form (16) and explicitly follows after insertion
of (19) into (16). The resulting Hamiltonian

H = a† · a + 3/2 + k
∑

lκ

f †
κ u†

κ (a
†
l + al) · τl · uκ fκ

= a† · a + 3/2 +
k√
3

∑

κ

f †
κ [exrκ R(a†

1 + a1)R

+ eyrκ R†(a†
2 + a2) + ezrκ (a

†
3 + a3)R

† + H.c.] fκ

is manifestly diagonal in the fκ , f †
κ and reduces to the simpler expression

H = a† · a + 3/2 +
√

3key

∑

κ

f †
κ [rκ R†(a†

2 + a2) + H.c.] fκ , (24)

if use is made of the identities ex R(a†
1 +a1)R = ey R†(a†

2 +a2) = ez(a
†
3+a3)R†, whose derivation

rests on (12b) and the relation R2 = R†. After insertion of (21) into (24) the Hamiltonian
loses its explicit dependence on the chosen rotation axis, but still remains implicitly dependent
on the direction e (via the operators fκ and bµ):

H = b† · b + 3/2 + g
∑

κµ

f †
κ (Cκ+µbµ + H.c.) fκ . (25)

Here κ and µ range over the values 0,±1 and g ≡ k/
√

3, while the operator function Cκ and
its counterpart Sκ are defined by the equations

Cκ = eiκθ R† + e−iκθ R = 2 cos[(N+ − N− − κ)θ ], (26a)

Sκ = i(eiκθ R† − e−iκθ R) = 2 sin[(N+ − N− − κ)θ ]. (26b)

3. Decomposition of the Hamiltonian

The main goal of this section is to demonstrate that the vibronic states, constructed with the
help of the new operators fκ and bµ obtained above, induce a decay of the entire Hilbert space
L into two orthogonal subspaces L1 and L2 such that, for strong coupling, the low-lying states
in L1 are separated from all states in L2 by a large energy gap.

Insight into the structure of the Hilbert space may be gained from an investigation of the
strong-coupling case (g � 1). To this end we recall the special role played by the longitudinal
mode b0, which commutes with the rotation R and, hence, with Cκ . This property may be used
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to remove the coupling term g
∑

κ f †
κ (Cκb0 + H.c.) fκ from Hamiltonian (25) by means of the

unitary transformation W = ∑
κ f †

κ Wκ fκ , where

Wκ = exp[−g(b†
0 − b0)Cκ ] (27)

describes a distortion of the octahedron along the rotation axis e. By means of the relations

W †
κ b† · bWκ = b† · b − g(b†

0 + b0)Cκ + g2C2
κ , (28a)

W †
κ (b

†
0 + b0)Wκ = b†

0 + b0 − 2gCκ, (28b)

whose derivation rests on (11), the transformed Hamiltonian is readily obtained as

W † H W = b† · b + 3/2 − g2
∑

κ

f †
κ C2

κ fκ

+ g
∑

κ

∑

µ=±1

f †
κ W †

κ (Cκ+µbµ + H.c.)Wκ fκ . (29)

For the subsequent discussion it suffices to consider only the diagonal terms in the first line
of (29), whose contribution to the energies is of O(g2), and to neglect the coupling terms in
the second line, which have been shown to provide only small corrections of O(g0) (Shultz
and Silbey 1976). In this approximation the eigenvectors of W † H W are

|κn〉 ≡ f †
κ

∏

µ

(b†
µ)

nµ

√
nµ!

|0〉 = f †
κ |n+n0n−〉, (30)

while the corresponding eigenvalues read

E (0)
κn = n + 3/2 − 4g2 cos2[(n+ − n− − κ)θ ], (31)

where κ = 0,±1 and n = n+ + n0 + n−. Since n+ − n− − κ is an integer and θ = 2π/3, the
cosine in (31) can only take the values 1 and −1/2. This results in two groups of eigenvalues,

E (0)
κn1 = n + 3/2 − 4g2, (32a)

E (0)
κn2 = n + 3/2 − g2, (32b)

being separated from each other by the large energy gap� = 3g2. The low-energy form (32a)
applies if, for given n+ and n−, κ is a solution to the equation

n+ − n− − κ = ±3m (m = 0, 1, 2, . . .), (33)

while the high-energy form (32b) obtains, if κ fails to satisfy criterion (33). It is easy to see
that (33) always possesses a unique solution κ for any given n+ and n−. If n+ − n− = 4, for
example, the only solution to (33) is κ = 1, while the only solution for n+ −n− = 5 is κ = −1.
Accordingly, the total Hilbert space L consists of two orthogonal subspaces L1 and L2, where
L1 is spanned by all vectors |κn〉, equation (30), whose quantum numbers κ, n+, n− satisfy
criterion (33), whereas L2 is spanned by all other states so that L = L1 ⊕ L2. Since we are
only interested in the low-energy part of the spectrum, the relevant portion of the Hamiltonian
is given by its restriction to the subspace L1.

The most convenient way to generate L1 and L2 is by means of projection operators,
whose treatment requires some properties of the functions (26). Apart from the cyclic property
Cκ+3 = Cκ , Sκ+3 = Sκ , these operators satisfy numerous identities whose proof follows directly
from their definition and the relation

∑
κ eiκθ = 0, valid for θ = 2π/3. A few identities are

listed below, while others will be given when they are needed:

C2
κ = 2 + Cκ, (34a)∑

κ

Cκ =
∑

κ

Sκ = 0. (34b)
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With the help of Cκ we now define the projection operators

P1 = 1
3

∑

κ

f †
κ (1 + Cκ) fκ , P2 = 1

3

∑

κ

f †
κ (2 − Cκ ) fκ , (35)

whose basic properties Pi Pj = δi j Pi , P1 + P2 = 1, analogous to those in (15b), are readily
proven with the help of identity (34a). These operators generate the subspaces L1 and L2

defined above: since Cκ |κn〉 = 2|κn〉 if |κn〉 ∈ L1, and Cκ |κn〉 = −|κn〉 if |κn〉 ∈ L2, we
see that Li is an eigenspace of Pi to the eigenvalue 1, while Pi = 0 on the complementary
subspace. This may be summarized by the symbolic equations PiL = Li (i = 1, 2).

We now use the projection operators to decompose the Hamiltonian with respect to the
subspaces. To this end we recast (25) into the form H = X0 + X1, where

X0 = b† · b + 3/2 + g
∑

κ

f †
κ (Cκb0 + H.c.) fκ , (36a)

X1 = g
∑

κ

∑

µ=±1

f †
κ (Cκ+µbµ + H.c.) fκ . (36b)

The decomposition is achieved with the help of the identity H = (P1 + P2)H (P1 + P2), which
requires us to evaluate all products of the form Pi Xk Pj , where the Xk(k = 0, 1) are given by
equations (36). Starting with X0, we readily find that

P1 X0 P1 = [b† · b + 3/2 + 2g(b†
0 + b0)]P1, (37a)

P2 X0 P2 = [b† · b + 3/2 − g(b†
0 + b0)]P2, (37b)

whereas

P1 X0 P2 = P2 X0 P1 = 0. (37c)

Hence, X0 is a pure term possessing nonzero matrix elements only if the states involved
are from the same subspace. The derivation of the products Pi X1 Pj rests on the identity
(1 + Cκ+µ)(1 + Cκ−µ) = 0, valid for µ = ±1. This is obtained from (34b) and the relation
Cκ+µCκ−µ = Cκ − 1, which follows directly from definition (26a). Using these relations we
find that, in contrast to X0, X1 mixes states from L1 and L2:

P1 X1 P2 = −g P1 Q+, P2 X1 P1 = −gQ+ P1. (38)

Here the operator Q+ and its companion Q− are defined as

Q± = ±Q†
± =

∑

κ

∑

µ=±1

f †
κ (b

†
µ ± bµ) fκ , (39)

and their most important properties are

P1 Q± = P1 Q± P2, P1 Q± P1 = 0, (40a)

[b† · b, Q±] = Q∓, [Q+, Q−] = 4. (40b)

Finally, while X1 is readily shown to vanish on subspace L1, i.e., P1 X1 P1 = 0, it does not
vanish on L2, where it takes the form

P2 X1 P2 = (2g/3)
∑

κ

∑

µ=±1

f †
κ [(1 + Cκ+µ)bµ + H.c.] fκ = (2/3)(gQ+ + X1). (41)

To achieve a more convenient and transparent expression we multiply (41) on both sides by
P2 again; a straightforward calculation then leads to the simple result

P2 X1 P2 = 2g P2 Q+ P2. (42)

The preceding considerations enable us to write down the Hamiltonian in decomposed
form. As we have seen above, this will consist of pure terms as well as mixing terms, whose
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matrix elements are nonzero only if the states involved are from both L1 and L2. Using (37),
(38), and (42) the decomposed Hamiltonian is obtained as

H = b† · b + 3/2 + 2g P2 Q+ P2

+ g(b†
0 + b0)(2P1 − P2)

− g(P1 Q+ + Q+ P1). (43)

One recognizes that the operators in the last line are mixing terms, since P1 Q+ = P1 Q+ P2 by
virtue of (40a), while all the remaining terms are pure. The next obvious step is to remove the
linear coupling term in the second line of (43) by means of the unitary transformation

U0 = exp[−g(b†
0 − b0)(2P1 − P2)]. (44)

The transformed Hamiltonian is readily obtained with the help of (11), and is given by

U †
0 HU0 = b† · b + 3/2 − g2(4P1 + P2)

− g(e�P1 Q+ + Q+ P1e−�)
+ 2g P2 Q+ P2, (45a)

where

� = −�† = 3g(b†
0 − b0). (45b)

4. Systematic strong-coupling expansion

Hamiltonian (45) represents a suitable starting point for a systematic expansion about the
strong-coupling limit. The principle of the method is to eliminate the leading mixing terms
from the Hamiltonian successively by a sequence of unitary transformations. These are rather
easy to handle because of the orthogonality of the projection operators. As the first step, we
need to find a transformation which removes the mixing terms in the second line of (45a). This
will generate an infinite series of pure terms in increasing powers of g−1, and to obtain results
beyond those already found by Moffitt and Thorson (1957), we shall terminate the series after
the terms of O(g−2). In addition, however, the transformation generates an infinite series of
new mixing terms, whose leading members are now of O(g0). These are eliminated in the
second step by means of another unitary transformation resulting in additional pure terms as
well as new mixing terms of lower order. The procedure comes to an end when the new terms
generated on L1 become smaller than O(g−2).

Following these lines we first try to eliminate the mixing terms in the second line of (45a)
by means of the unitary transformation

U1 = exp[−(α/g)(e�P1 Q+ − Q+ P1e−�)], (46)

where α is fixed by the requirement that the mixing terms should no longer appear in the
transformed Hamiltonian. Using (11), (40) and the relation e�b0e−� = b0 − 3g, where � is
defined by (45b), we find that α = 1/12. The transformed Hamiltonian assumes the form

H (1) ≡ U †
1 U †

0 HU0U1 = H (1)
1 + H (1)

2 + H (1)
12 , (47)

where

H (1)
1 = (b† · b + 3/2 − 4g2)P1 − 1

12 T+

+
α

6g
P1 Q3

+ P1 − α

4g
(b†

0 + b0)T+

+
2α2

g2
P1 +

α3

g2
T 2

+ + O(g−3) (48a)



Systematic strong-coupling expansion of the T ⊗ t Jahn–Teller system 4723

and

H (1)
2 = (b† · b + 3/2 − g2)P2

+ 2g P2 Q+ P2 + 5
24 Q+ P1 Q+

− α2

g
(P2 Q2

+ P1 Q+ + H.c.) +
3α2

g
(b†

0 + b0)Q+ P1 Q+

+
α2

g2
K − α2

8g2
Q+T+ Q+ + O(g−3) (48b)

contain the pure terms, H (1)
1 being defined on L1 and H (1)

2 on L2, while the new mixing terms
are all contained in

H (1)
12 = 1

6 (e
�P1 Q2

+ P2 + H.c.)− 1
4 [(b†

0 + b0)e�P1 Q+ + H.c.]

− α

g
(e�P1 Q− + H.c.) +

α

9g
(e�T+ Q+ + H.c.)

− α3

3g2
(e�T+ Q2

+ P2 + 3e�P1 Q3
+ P1 Q+ + H.c.)

+
2α3

g2
[(b†

0 + b0)e�T+ Q+ + H.c.] + O(g−3). (48c)

In these equations we have introduced the Hermitian operators

T+ = P1 Q2
+ P1 and K = 1

2 (Q+ P1 Q− + H.c.), (49)

whose explicit form is readily obtained with the help of (35) and (39). A somewhat lengthy
calculation yields the expressions

T+ = 2N P1, (50a)

N = N+ + N− + 1 + b†
+b†

− + b+b−, (50b)

K = P2 − (N+ − N−)
1√
3

∑

κ

f †
κ Sκ fκ , (50c)

where Nµ = b†
µbµ (µ = ±) and Sκ is defined by (26b). The operator N in (50b) commutes

with the rotation operator (22) and, hence, with both P1 and P2.
To gain some insight into the nature of the low-lying eigenvalues of H (1), it is expedient

to investigate first a simpler case. This is obtained if all terms smaller than O(g0) are omitted
in equations (48). Since H (1)

2 is irrelevant for the low-lying eigenvalues and the contribution
of the mixing terms to H (1) is only of O(g−2), the effective Hamiltonian H1 on L1 is simply
given by the terms in the first line of (48a):

H1 = (b† · b + 3/2 − 4g2 − 1
6N )P1 + O(g−1). (51)

A glance at (50b) reveals that H1 is a quadratic form in the vibrational operators, which can
be straightforwardly diagonalized by means of the Bogoliubov transformation

V0 = exp[φ(b†
+b†

− − b+b−)]. (52)

This commutes with both projection operators and is very similar to the scale transformation
used by Liu et al (1996). Applying formula (11) again, we find the new modes

V †
0 b±V0 = b± cosh φ + b†

∓ sinh φ, (53)

whose substitution into V †
0 H1V0 leads to the Hamiltonian

V †
0 H1V0 = [

N0 + 1/2 − 4g2

+ (1/6)(N+ + N− + 1)(5 cosh 2φ − sinh 2φ)

+ (1/6)(b+b− + H.c.)(5 sinh 2φ − cosh 2φ)
]
P1 + O(g−1). (54)
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This takes diagonal form if φ satisfies the condition 5 sinh 2φ − cosh 2φ = 0 or

tanh 2φ = 1/5,

implying that

sinh 2φ = 1

2
√

6
, cosh 2φ = 5

2
√

6
.

Then, since (5 cosh 2φ − sinh 2φ)/6 = √
2/3, Hamiltonian (54) takes the diagonal form

V †
0 H1V0 =

[
N0 + 1/2 +

√
2/3(N+ + N− + 1)− 4g2

]
P1 + O(g−1), (55)

whence we see that the eigenvalues of H1 are the same as those found by Moffitt and Thorson
(1957) from their investigation of the static JT problem.

Returning to the general scheme we now seek to remove the mixing terms of O(g0) in the
first line of (48c). This is achieved by means of the transformations

U21 = exp[(α21/g2)(e�P1 Q2
+ P2 − H.c.)], (56a)

U22 = exp{−(α22/g2)[(b†
0 + b0)e�P1 Q+ − H.c.]}, (56b)

whereα21 and α22 are fixed by the condition that the transformed Hamiltonian should no longer
contain mixing terms of O(g0). The explicit calculation givesα21 = α/6 andα22 = α/4, where
α = 1/12 as in equations (48). With the notation U2 = U21U22 the transformed Hamiltonian
may be recast into the form of equation (47) and written as

H (2) = U †
2 H (1)U2 = H (2)

1 + H (2)
2 + H (2)

12 . (57)

The relevant Hamiltonian on L1 is now given by the expression

H (2)
1 = H (1)

1 − α2

3g2
P1 Q2

+ P2 Q2
+ P1 − 3α2

4g2
(b†

0 + b0)
2T+

+
α2

g2
(b†

0 + b0)P1 Q3
+ P1 + O(g−3), (58)

where H (1)
1 is defined by (48a). The remaining parts of (57) are discussed in appendix A.

The next step of the procedure would be to eliminate the mixing terms of O(g−1), and
equation (A.2) shows that there are already five such terms. Fortunately, however, no further
transformations are needed, for a lengthy examination shows that all the remaining mixing
terms give rise to new terms on L1, whose leading members are only of O(g−3) and, hence,
are beyond the scope of our treatment. In other words, expression (58) already contains all
terms of O(g−2) and, thus, is the complete effective Hamiltonian H1 on L1. Expression (58)
may be simplified by means of the identity

P1 Q2
+ P2 Q2

+ P1 = 2N 2 P1 = 1
2 T 2

+ , (59)

whose derivation rests on (39), (50a) and (50b). With the help of (48a), (58) and (59), the
effective Hamiltonian may finally be written as

H1 ≡ H (2)
1 = (b† · b + 3/2 − 4g2)P1 − 1

12 T+

+
α

6g
P1 Q3

+ P1 − α

4g
(b†

0 + b0)T+

+
2α2

g2
P1 − α3

g2
T 2

+ − 3α2

4g2
(b†

0 + b0)
2T+

+
α2

g2
(b†

0 + b0)P1 Q3
+ P1 + O(g−3). (60)



Systematic strong-coupling expansion of the T ⊗ t Jahn–Teller system 4725

This expression represents the strong-coupling expansion of Hamiltonian (45) in powers of
g−1, truncated after the terms of O(g−2). Although the various terms in (60) have no particular
physical meaning, they exhibit a clear trend towards increasing anharmonicity, whose origin
is best understood in terms of the potential-energy surface. For growing g this surface has
been shown by numerous authors (Van Vleck 1939, Öpik and Pryce 1957, Bersuker and
Polinger 1974, Bates et al 1987) to develop four equivalent wells located on the rotation axes
ea given by (4). In the strong-coupling regime considered here, the depth of the wells becomes
proportional to g2, causing the complex to vibrate about one distorted configuration, but the
wells are neither harmonic nor isotropic. This explains both the growing anharmonicity with
increasing powers of g−1 and the splitting of the t2g vibrations. Moreover, the presence of
the four equivalent wells also explains the fourfold degeneracy of the ground state in the limit
g → ∞, as will be discussed in more detail below.

It still remains to bring the effective Hamiltonian (60) to diagonal form, and it turns out
that this can be wholly achieved by means of further unitary transformations. On application
of the Bogoliubov transformation (52), the Hamiltonian assumes the form

V †
0 H1V0 = [N0 + 1/2 +

√
2/3(N+ + N− + 1)− 4g2]P1

+
α

6g
e3φP1 Q3

+ P1 − α

2g
e2φ(b†

0 + b0)N P1

+
2α2

g2
P1 − α2

2g2
N 2 P1 − 3α2

2g2
e2φ(b†

0 + b0)
2N P1

+
α2

g2
e3φ(b†

0 + b0)P1 Q3
+ P1 + O(g−3), (61)

where (50a) has been used and

e2φ = sinh 2φ + cosh 2φ = √
3/2. (62)

To complete the diagonalization, we need to remove the two terms in the second line of (61).
As a result of the process, whose details are outlined in appendix B, we finally obtain the
diagonalized effective Hamiltonian

V † H1V = [N0 + 1/2 +
√

2/3(N+ + N− + 1)− 4g2]P1

+
3α2

5g2
P1 − α2

2g2
[N+(N+ + 1) + N−(N− + 1)]P1

− 17α2

5g2
[N+(N− + 1) + N−(N+ + 1)]P1

− 18α2

5g2
e2φ(N0 + 1/2)(N+ + N− + 1)P1 + O(g−3). (63)

One first observes that each eigenvalue of (63) is 4(n+ + n− + 1)-fold degenerate, where the
prefactor is a consequence of the four equivalent wells on the potential-energy surface. The
same degeneracy has already been found by Englman et al (1970), albeit restricted to the
levels without the O(g−2) corrections. One further observes that these corrections are always
negative. This is expected to lead to a small, but observable, effect on the eigenvalues in
intermediate coupling, which seems in fact to be present in the majority of levels computed
by Caner and Englman (1966). The effect seems to be absent, however, in the singlet states
arising from the tunnelling splitting (see below).

The eigenvectors of H1 are readily seen to have the form |�κn〉 = V |κn〉, where
V = V0V1V2 and |κn〉 is given by (30). To ensure that |�κn〉 belongs to the relevant subspace
L1, it suffices to require that |κn〉 ∈ L1. Then, since P1 commutes with all transformations
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Vi (i = 0, 1, 2), we have the eigenvalue equation P1|�κn〉 = |�κn〉 showing that |�κn〉 ∈ L1.
The most important special case is the ground state |�00〉 = V f †

0 |000〉, characterized by the
quantum numbers n0 = n± = κ = 0, and since these satisfy criterion (33), |�00〉 is clearly an
element of L1. The ground-state energy E0 follows from (63) and is given by the expression

E0 = −4g2 + 1/2 +
√

2/3 − 3α2

5g2
(3e2φ − 1) + O(g−3) (64)

showing that the terms of O(g−2) are small because of the tiny prefactor (3α2/5 = 1/240).
This takes a six times larger value, however, if our g2 is replaced by k2 = 6g2, the coupling
parameter used by Englman et al (1970).

So far our treatment lacks an important ingredient of the strongly coupled T ⊗ t system,
which is closely related to the presence of the four equivalent wells mentioned above. Since
the eigenvalues of (63) do not depend on the chosen rotation axis e, the energy levels are the
same for all the wells, but eigenvectors belonging to different wells become orthogonal in the
limit g → ∞. Hence, in this limit, each eigenvalue is at least fourfold degenerate, implying
the fourfold degeneracy of the ground state. For all finite values of g the ground-state wave
functions have a finite overlap, causing the electron to tunnel between the wells. If tunnelling
sets in, our treatment in terms of the subgroup C3 of rotations about a fixed axis is no longer
sufficient, and the full group Oh has to be used instead. The fourfold degenerate ground state
will then split into a singlet and a triplet, where the latter turns out to have the lower energy.
The singlet–triplet splitting has been calculated by Judd (1974), Shultz and Silbey (1976) and,
more recently, by Liu et al (1996).

The most convenient way to calculate the splitting within our approach may be outlined as
follows. First of all, we recall that our basic operators fκ and bµ are dependent on the direction
e of the chosen rotation axis, as follows from (20a) and (21). Hence, all the Hamiltonians
derived above also depend on e, the only exception being Hamiltonian (3), which has the
full cubic symmetry. To keep our formalism as far as possible, Hamiltonian (3) will be
used in the form Ĥ = (1/4)

∑4
a=1 H (a), where H (a) refers to the direction (or well) ea

and has the form (43). In strong coupling, its ground-state eigenvector is related to |�00〉
given above and reads |�(a)

00 〉 = U (a)V (a) f (a)†0 |000〉, where U (a) = U (a)
0 U (a)

1 U (a)
2 denotes the

product of the transformations (44), (46) and (56), expressed in terms of the f (a)κ and b(a)µ . To

enable tunnelling, linear combinations of the |�(a)
00 〉 must be taken transforming according to

irreducible representations of Oh. These linear combinations are then used to calculate the
singlet and triplet energies and, thus, the singlet–triplet splitting. Since our |�(a)

00 〉 are expected
to be accurate ground states in the range from intermediate to strong coupling, our result for
the singlet–triplet splitting should be rather close to the numerical findings obtained by Caner
and Englman (1966). Work along these lines is in progress.

5. Summary and outlook

Over several decades analytic approaches to the T ⊗ t JT effect have been facing two major
difficulties. One of these arose from the desire to find a unified quantum treatment of the
mode-splitting problem, i.e., the splitting of the degenerate t2g vibrational modes in the strong-
coupling regime. The more fundamental issue, however, was the lack of any viable systematic
method allowing one to extend the calculation of the spectrum and eigenstates into regions
away from the limits of weak and strong coupling. Motivated by these problems, we have
developed an analytic approach to the strongly coupled T ⊗ t system giving rise to a systematic
expansion of the Hamiltonian in inverse powers of the coupling parameter. Such expansions
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about the limits of weak and strong coupling might also serve as a first step towards a better
understanding of the role of the JT effect in the titanates.

The main ingredient of our treatment is a novel vibronic basis causing the Hilbert space
to decay into two orthogonal subspaces L1 and L2, which reflect the peculiar energy-level
structure in strong coupling. In this range only L1 is relevant, since the states in L2 are too
high in energy. This leads to the construction of an effective Hamiltonian defined on L1 and
generated by means of projection operators. The eigenvalues of the lowest-order effective
Hamiltonian include the correct splitting of the t2g vibrational modes and are exactly the same
as those found by Moffitt and Thorson (1957) from their classical treatment of the static JT
problem.

Although very little is known about the JT effect in the titanates, our strong-coupling
scenario might be appropriate for YTiO3, whereas a weak-coupling approach seems to be
more realistic for LaTiO3 at the other end of the series. A convenient starting point for a weak-
coupling expansion is provided by equation (25), since in this case there is no justification for
the introduction of the subspaces L1 and L2. Finally, the influence of the ubiquitous trigonal
crystal field as well as the role of the eg modes should also be investigated.
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Appendix A. Explicit form of H (2)
2 and H (2)

12

In our discussion of the transformed Hamiltonian (57) only the relevant part H (2)
1 on subspace

L1 has been written down explicitly (see (58)). For the sake of completeness, the remaining
parts of (57) will be given in this appendix. We begin with the Hamiltonian H (2)

2 on subspace
L2. This is obtained as

H (2)
2 = H (1)

2 + 15
32 Q+ P1 Q+

− 13

16

α

g
(P2 Q2

+ P1 Q+ + H.c.) +
39

16

α

g
(b†

0 + b0)Q+ P1 Q+

+
21

4

α2

g2
K +

5

6

α2

g2
P2 Q2

+ P1 Q2
+ P2 − 827

384

α2

g2
Q+T+ Q+

+
α2

2g2
(P2 Q+ P2 Q2

+ P1 Q+ + H.c.) +
33

8

α2

g2
(b†

0 + b0)
2 Q+ P1 Q+

− 11

4

α2

g2
(b†

0 + b0)(P2 Q2
+ P1 Q+ + H.c.) + O(g−3), (A.1)

where H (1)
2 is defined by (48b). The new mixing terms generated by the transformation

U2 (=U21U22) are contained in the operator

H (2)
12 = H̄ (1)

12 − α

3g
(e�P1 Q2

+ P2 Q+ P2 + H.c.)

+
α

g
[(b†

0 + b0)e
�P1 Q2

+ P2 + H.c.] − 3α

4g
[(b†

0 + b0)
2e�P1 Q+ + H.c.]

− 3α2

g2
[(b†

0 + b0)e�P1 Q− + H.c.] − 3α2

g2
(b†

0 − b0)(e�P1 Q+ − H.c.)
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+
α2

2g2
[(b†

0 + b0)e
�T+ Q+ + H.c.] − α2

6g2
(e�T+ Q2

+ P2 + H.c.)

+
4α2

g2
(e�P1 Q+ Q− P2 + H.c.)− 5α3

g2
(e�P1 Q3

+ P1 Q+ + H.c.) + O(g−3), (A.2)

where H̄ (1)
12 is defined by (48c), but without the terms of O(g0) in the first line. The preceding

equation shows that there are now five mixing terms of O(g−1). Their diagonalization leaves
the result of (58) unaltered, as was already claimed in the main text, but does contribute
additional terms of O(g−2) to H (2)

2 , equation (A.1).

Appendix B. Diagonal form of the effective Hamiltonian

The bring the effective Hamiltonian to diagonal form, we need to eliminate the two terms in
the second line of (61). The first of these terms, where

P1 Q3
+ P1 = (b†3

+ + 3b†2
+ b− + 3b†

+b2
− + b3

− + H.c.)P1, (B.1)

can be removed by means of the unitary operator

V1 = exp[−β1(
1
3 b†3

+ + 3b†2
+ b− − 3b†

+b2
− − 1

3 b3
− − H.c.)], (B.2)

where β1 = (α/4g)eφ. This transformation leads to the Hamiltonian

V †
1 V †

0 H1V0V1 = [N0 + 1/2 +
√

2/3(N+ + N− + 1)− 4g2]P1

− α

2g
e2φ(b†

0 + b0)N P1

+
7α2

4g2
P1 − α2

2g2
N 2 P1 − 3α2

2g2
e2φ(b†

0 + b0)
2N P1

+
3α2

8g2
[N2

+ + N2
− − 12N+ N− − 5(N+ + N−)]P1 + O(g−3), (B.3)

where purely nondiagonal terms of O(g−2) have been omitted, in agreement with a first-order
perturbation treatment. The operator in the second line of (B.3) is conveniently eliminated
with the help of two successive transformations V21 and V22, where

V21 = exp[(α/2g)e2φ(b†
0 − b0)N ]. (B.4)

The transformed Hamiltonian assumes the form

V †
21V †

1 V †
0 H1V0V1V21 = [N0 + 1/2 +

√
2/3(N+ + N− + 1)− 4g2]P1

+
α

g
(b†

0 − b0)(b
†
+b†

− − b+b−)P1

+
7α2

4g2
P1 − α2

g2
e2φ(2N0 + 1)N P1 − 7α2

8g2
N 2 P1

+
3α2

8g2
[N2

+ + N2
− − 12N+ N− − 5(N+ + N−)]P1 + O(g−3), (B.5)

where purely nondiagonal terms of O(g−2) have again been omitted.
Finally, the remaining nondiagonal part in the second line of (B.5) can be removed by

means of the unitary operator

V22 = exp[β22(b
†
0 + b0)(b

†
+b†

− − H.c.) + β ′
22(b

†
0 − b0)(b

†
+b†

− + H.c.)], (B.6)
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where β22 and β ′
22 are fixed by the requirement that the transformed Hamiltonian should not

contain terms linear in b†
0 + b0 and b†

0 − b0. This leads to the relations

β22 = 3α/5g and β ′
22 = −2β22e−2φ. (B.7)

With the notation V2 = V21V22 and V = V0V1V2, the transformed Hamiltonian becomes

V † H1V = [N0 + 1/2 +
√

2/3(N+ + N− + 1)− 4g2]P1

+
7α2

4g2
P1 +

3α2

5g2
(2N+ N− + N+ + N− + 1)P1

− 7α2

8g2
(N+ + N− + 1 + b†

+b†
− + b+b−)2 P1

+
3α2

8g2
[N2

+ + N2
− − 12N+ N− − 5(N+ + N−)]P1

− 9α2

5g2
e2φ(2N0 + 1)(N+ + N− + 1)P1 + O(g−3), (B.8)

where (50b) has been used. This can be written in the more convenient form (63), if all
nondiagonal terms of O(g−2) are omitted in the third line of (B.8).
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